zmap-freebsd/src/cyclic.c

185 lines
5.1 KiB
C
Raw Normal View History

2013-08-16 15:12:47 +00:00
/*
* ZMap Copyright 2013 Regents of the University of Michigan
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy
* of the License at http://www.apache.org/licenses/LICENSE-2.0
*/
/*
* cyclic provides an inexpensive approach to iterating over the IPv4 address
* space in a random(-ish) manner such that we connect to every host once in
* a scan execution without having to keep track of the IPs that have been
* scanned or need to be scanned and such that each scan has a different
* ordering. We accomplish this by utilizing a cyclic multiplicative group
* of integers modulo a prime and generating a new primitive root (generator)
* for each scan.
*
* We know that 3 is a generator of (Z mod 2^32 + 15 - {0}, *)
* and that we have coverage over the entire address space because 2**32 + 15
* is prime and ||(Z mod PRIME - {0}, *)|| == PRIME - 1. Therefore, we
* just need to find a new generator (primitive root) of the cyclic group for
* each scan that we perform.
*
* Because generators map to generators over an isomorphism, we can efficiently
* find random primitive roots of our mult. group by finding random generators
* of the group (Zp-1, +) which is isomorphic to (Zp*, *). Specifically the
* generators of (Zp-1, +) are { s | (s, p-1) == 1 } which implies that
* the generators of (Zp*, *) are { d^s | (s, p-1) == 1 }. where d is a known
* generator of the multiplicative group. We efficiently find
* generators of the additive group by precalculating the psub1_f of
* p - 1 and randomly checking random numbers against the psub1_f until
* we find one that is coprime and map it into Zp*. Because
* totient(totient(p)) ~= 10^9, this should take relatively few
* iterations to find a new generator.
*/
#include "cyclic.h"
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <time.h>
#include <assert.h>
#include <string.h>
#include <math.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <gmp.h>
#include "../lib/logger.h"
#include "../lib/blacklist.h"
#include "state.h"
#include "aesrand.h"
#define LSRC "cyclic"
#define PRIME 4294967311 // 2^32 + 15
#define KNOWN_PRIMROOT 3
// distinct prime factors of 2^32 + 15
static const uint64_t psub1_f[] = { 2, 3, 5, 131, 364289 };
// selected primitive root that we'll use as the generator
static uint64_t primroot = 0;
static uint64_t current = 0;
#define COPRIME 1
#define NOT_COPRIME 0
// check whether two integers are coprime
static int check_coprime(uint64_t check)
{
for (unsigned i=0; i < sizeof(psub1_f)/sizeof(psub1_f[0]); i++) {
if (psub1_f[i] > check && !(psub1_f[i] % check)) {
return NOT_COPRIME;
} else if (psub1_f[i] < check && !(check % psub1_f[i])) {
return NOT_COPRIME;
} else if (psub1_f[i] == check) {
return NOT_COPRIME;
}
}
return COPRIME;
}
// find gen of cyclic group Z modulo PRIME
static uint64_t find_primroot(void)
{
// what luck, rand() returns a uint32_t!
uint32_t candidate = (uint32_t) aesrand_getword() & 0xFFFF;
while(check_coprime(candidate) != COPRIME) {
++candidate;
}
// pre-modded result is gigantic so use GMP
mpz_t base, power, prime, primroot;
mpz_init_set_d(base, (double) KNOWN_PRIMROOT);
mpz_init_set_d(power, (double) candidate);
mpz_init_set_d(prime, (double) PRIME);
mpz_init(primroot);
mpz_powm(primroot, base, power, prime);
uint64_t retv = (uint64_t) mpz_get_ui(primroot);
mpz_clear(base);
mpz_clear(power);
mpz_clear(prime);
mpz_clear(primroot);
return retv;
}
int cyclic_init(uint32_t primroot_, uint32_t current_)
{
assert(!(!primroot_ && current_));
if (zconf.use_seed) {
aesrand_init(zconf.seed+1);
} else {
aesrand_init(0);
}
if (!primroot_) {
do {
primroot = find_primroot();
} while (primroot >= (1LL << 32));
log_debug(LSRC, "primitive root: %lld", primroot);
current = (uint32_t) aesrand_getword() & 0xFFFF;
log_debug(LSRC, "starting point: %lld", current);
} else {
primroot = primroot_;
log_debug(LSRC, "primitive root %lld specified by caller",
primroot);
if (!current_) {
current = (uint32_t) aesrand_getword() & 0xFFFF;
log_debug(LSRC, "no cyclic starting point, "
"selected random startpoint: %lld",
current);
} else {
current = current_;
log_debug(LSRC, "starting point %lld specified by caller",
current);
}
}
zconf.generator = primroot;
if (blacklist_init_from_files(zconf.whitelist_filename,
zconf.blacklist_filename)) {
return -1;
}
// make sure current is an allowed ip
cyclic_get_next_ip();
return 0;
}
uint32_t cyclic_get_curr_ip(void)
{
return (uint32_t) current;
}
uint32_t cyclic_get_primroot(void)
{
return (uint32_t) primroot;
}
static inline uint32_t cyclic_get_next_elem(void)
{
do {
current *= primroot;
current %= PRIME;
} while (current >= (1LL << 32));
return (uint32_t) current;
}
uint32_t cyclic_get_next_ip(void)
{
while (1) {
uint32_t candidate = cyclic_get_next_elem();
if (!blacklist_is_allowed(candidate)) {
zsend.blacklisted++;
} else {
return candidate;
}
}
}